Enter a problem...
Linear Algebra Examples
Step 1
Step 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Step 1.2
Multiply each row in the first matrix by each column in the second matrix.
Step 2
Write as a linear system of equations.
Step 3
Step 3.1
Solve for in .
Step 3.1.1
Move all terms not containing to the right side of the equation.
Step 3.1.1.1
Subtract from both sides of the equation.
Step 3.1.1.2
Subtract from both sides of the equation.
Step 3.1.2
Divide each term in by and simplify.
Step 3.1.2.1
Divide each term in by .
Step 3.1.2.2
Simplify the left side.
Step 3.1.2.2.1
Cancel the common factor of .
Step 3.1.2.2.1.1
Cancel the common factor.
Step 3.1.2.2.1.2
Divide by .
Step 3.1.2.3
Simplify the right side.
Step 3.1.2.3.1
Simplify each term.
Step 3.1.2.3.1.1
Dividing two negative values results in a positive value.
Step 3.1.2.3.1.2
Dividing two negative values results in a positive value.
Step 3.2
Replace all occurrences of with in each equation.
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Apply the distributive property.
Step 3.2.2.1.1.2
Multiply .
Step 3.2.2.1.1.2.1
Combine and .
Step 3.2.2.1.1.2.2
Raise to the power of .
Step 3.2.2.1.1.2.3
Raise to the power of .
Step 3.2.2.1.1.2.4
Use the power rule to combine exponents.
Step 3.2.2.1.1.2.5
Add and .
Step 3.2.2.1.1.3
Multiply .
Step 3.2.2.1.1.3.1
Combine and .
Step 3.2.2.1.1.3.2
Combine using the product rule for radicals.
Step 3.2.2.1.1.3.3
Multiply by .
Step 3.2.2.1.1.4
Simplify each term.
Step 3.2.2.1.1.4.1
Rewrite as .
Step 3.2.2.1.1.4.1.1
Use to rewrite as .
Step 3.2.2.1.1.4.1.2
Apply the power rule and multiply exponents, .
Step 3.2.2.1.1.4.1.3
Combine and .
Step 3.2.2.1.1.4.1.4
Cancel the common factor of .
Step 3.2.2.1.1.4.1.4.1
Cancel the common factor.
Step 3.2.2.1.1.4.1.4.2
Rewrite the expression.
Step 3.2.2.1.1.4.1.5
Evaluate the exponent.
Step 3.2.2.1.1.4.2
Cancel the common factor of and .
Step 3.2.2.1.1.4.2.1
Factor out of .
Step 3.2.2.1.1.4.2.2
Cancel the common factors.
Step 3.2.2.1.1.4.2.2.1
Factor out of .
Step 3.2.2.1.1.4.2.2.2
Cancel the common factor.
Step 3.2.2.1.1.4.2.2.3
Rewrite the expression.
Step 3.2.2.1.1.4.3
Simplify the numerator.
Step 3.2.2.1.1.4.3.1
Rewrite as .
Step 3.2.2.1.1.4.3.1.1
Factor out of .
Step 3.2.2.1.1.4.3.1.2
Rewrite as .
Step 3.2.2.1.1.4.3.2
Pull terms out from under the radical.
Step 3.2.2.1.1.4.4
Cancel the common factor of and .
Step 3.2.2.1.1.4.4.1
Factor out of .
Step 3.2.2.1.1.4.4.2
Cancel the common factors.
Step 3.2.2.1.1.4.4.2.1
Factor out of .
Step 3.2.2.1.1.4.4.2.2
Cancel the common factor.
Step 3.2.2.1.1.4.4.2.3
Rewrite the expression.
Step 3.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.2.1.3
Combine and .
Step 3.2.2.1.4
Combine the numerators over the common denominator.
Step 3.2.2.1.5
Combine the numerators over the common denominator.
Step 3.2.2.1.6
Multiply by .
Step 3.2.2.1.7
Subtract from .
Step 3.2.2.1.8
To write as a fraction with a common denominator, multiply by .
Step 3.2.2.1.9
Simplify terms.
Step 3.2.2.1.9.1
Combine and .
Step 3.2.2.1.9.2
Combine the numerators over the common denominator.
Step 3.2.2.1.10
Simplify the numerator.
Step 3.2.2.1.10.1
Move to the left of .
Step 3.2.2.1.10.2
Add and .
Step 3.2.2.1.10.3
Factor out of .
Step 3.2.2.1.10.3.1
Factor out of .
Step 3.2.2.1.10.3.2
Factor out of .
Step 3.2.2.1.10.3.3
Factor out of .
Step 3.2.3
Replace all occurrences of in with .
Step 3.2.4
Simplify the left side.
Step 3.2.4.1
Simplify .
Step 3.2.4.1.1
Simplify each term.
Step 3.2.4.1.1.1
Apply the distributive property.
Step 3.2.4.1.1.2
Multiply .
Step 3.2.4.1.1.2.1
Combine and .
Step 3.2.4.1.1.2.2
Combine using the product rule for radicals.
Step 3.2.4.1.1.2.3
Multiply by .
Step 3.2.4.1.1.3
Multiply .
Step 3.2.4.1.1.3.1
Combine and .
Step 3.2.4.1.1.3.2
Raise to the power of .
Step 3.2.4.1.1.3.3
Raise to the power of .
Step 3.2.4.1.1.3.4
Use the power rule to combine exponents.
Step 3.2.4.1.1.3.5
Add and .
Step 3.2.4.1.1.4
Simplify each term.
Step 3.2.4.1.1.4.1
Simplify the numerator.
Step 3.2.4.1.1.4.1.1
Rewrite as .
Step 3.2.4.1.1.4.1.1.1
Factor out of .
Step 3.2.4.1.1.4.1.1.2
Rewrite as .
Step 3.2.4.1.1.4.1.2
Pull terms out from under the radical.
Step 3.2.4.1.1.4.2
Cancel the common factor of and .
Step 3.2.4.1.1.4.2.1
Factor out of .
Step 3.2.4.1.1.4.2.2
Cancel the common factors.
Step 3.2.4.1.1.4.2.2.1
Factor out of .
Step 3.2.4.1.1.4.2.2.2
Cancel the common factor.
Step 3.2.4.1.1.4.2.2.3
Rewrite the expression.
Step 3.2.4.1.1.4.3
Rewrite as .
Step 3.2.4.1.1.4.3.1
Use to rewrite as .
Step 3.2.4.1.1.4.3.2
Apply the power rule and multiply exponents, .
Step 3.2.4.1.1.4.3.3
Combine and .
Step 3.2.4.1.1.4.3.4
Cancel the common factor of .
Step 3.2.4.1.1.4.3.4.1
Cancel the common factor.
Step 3.2.4.1.1.4.3.4.2
Rewrite the expression.
Step 3.2.4.1.1.4.3.5
Evaluate the exponent.
Step 3.2.4.1.1.4.4
Cancel the common factor of and .
Step 3.2.4.1.1.4.4.1
Factor out of .
Step 3.2.4.1.1.4.4.2
Cancel the common factors.
Step 3.2.4.1.1.4.4.2.1
Factor out of .
Step 3.2.4.1.1.4.4.2.2
Cancel the common factor.
Step 3.2.4.1.1.4.4.2.3
Rewrite the expression.
Step 3.2.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.4.1.3
Simplify terms.
Step 3.2.4.1.3.1
Combine and .
Step 3.2.4.1.3.2
Combine the numerators over the common denominator.
Step 3.2.4.1.3.3
Combine the numerators over the common denominator.
Step 3.2.4.1.4
Move to the left of .
Step 3.2.4.1.5
Add and .
Step 3.2.4.1.6
To write as a fraction with a common denominator, multiply by .
Step 3.2.4.1.7
Simplify terms.
Step 3.2.4.1.7.1
Combine and .
Step 3.2.4.1.7.2
Combine the numerators over the common denominator.
Step 3.2.4.1.8
Simplify the numerator.
Step 3.2.4.1.8.1
Multiply by .
Step 3.2.4.1.8.2
Add and .
Step 3.2.4.1.8.3
Factor out of .
Step 3.2.4.1.8.3.1
Factor out of .
Step 3.2.4.1.8.3.2
Factor out of .
Step 3.2.4.1.8.3.3
Factor out of .
Step 3.2.4.1.9
Simplify with factoring out.
Step 3.2.4.1.9.1
Factor out of .
Step 3.2.4.1.9.2
Factor out of .
Step 3.2.4.1.9.3
Factor out of .
Step 3.2.4.1.9.4
Simplify the expression.
Step 3.2.4.1.9.4.1
Rewrite as .
Step 3.2.4.1.9.4.2
Move the negative in front of the fraction.
Step 3.3
Solve for in .
Step 3.3.1
Set the numerator equal to zero.
Step 3.3.2
Solve the equation for .
Step 3.3.2.1
Divide each term in by and simplify.
Step 3.3.2.1.1
Divide each term in by .
Step 3.3.2.1.2
Simplify the left side.
Step 3.3.2.1.2.1
Cancel the common factor of .
Step 3.3.2.1.2.1.1
Cancel the common factor.
Step 3.3.2.1.2.1.2
Divide by .
Step 3.3.2.1.3
Simplify the right side.
Step 3.3.2.1.3.1
Divide by .
Step 3.3.2.2
Add to both sides of the equation.
Step 3.3.2.3
Divide each term in by and simplify.
Step 3.3.2.3.1
Divide each term in by .
Step 3.3.2.3.2
Simplify the left side.
Step 3.3.2.3.2.1
Cancel the common factor of .
Step 3.3.2.3.2.1.1
Cancel the common factor.
Step 3.3.2.3.2.1.2
Divide by .
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Simplify the numerator.
Step 3.4.2.1.1.1
Multiply .
Step 3.4.2.1.1.1.1
Combine and .
Step 3.4.2.1.1.1.2
Raise to the power of .
Step 3.4.2.1.1.1.3
Raise to the power of .
Step 3.4.2.1.1.1.4
Use the power rule to combine exponents.
Step 3.4.2.1.1.1.5
Add and .
Step 3.4.2.1.1.2
Rewrite as .
Step 3.4.2.1.1.2.1
Use to rewrite as .
Step 3.4.2.1.1.2.2
Apply the power rule and multiply exponents, .
Step 3.4.2.1.1.2.3
Combine and .
Step 3.4.2.1.1.2.4
Cancel the common factor of .
Step 3.4.2.1.1.2.4.1
Cancel the common factor.
Step 3.4.2.1.1.2.4.2
Rewrite the expression.
Step 3.4.2.1.1.2.5
Evaluate the exponent.
Step 3.4.2.1.1.3
Cancel the common factor of .
Step 3.4.2.1.1.3.1
Cancel the common factor.
Step 3.4.2.1.1.3.2
Divide by .
Step 3.4.2.1.1.4
Subtract from .
Step 3.4.2.1.2
Simplify the expression.
Step 3.4.2.1.2.1
Multiply by .
Step 3.4.2.1.2.2
Divide by .
Step 3.4.3
Replace all occurrences of in with .
Step 3.4.4
Simplify the right side.
Step 3.4.4.1
Simplify .
Step 3.4.4.1.1
Combine the numerators over the common denominator.
Step 3.4.4.1.2
Multiply .
Step 3.4.4.1.2.1
Combine and .
Step 3.4.4.1.2.2
Combine using the product rule for radicals.
Step 3.4.4.1.2.3
Multiply by .
Step 3.4.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 3.4.4.1.4
Simplify terms.
Step 3.4.4.1.4.1
Combine and .
Step 3.4.4.1.4.2
Combine the numerators over the common denominator.
Step 3.4.4.1.5
Simplify the numerator.
Step 3.4.4.1.5.1
Factor out of .
Step 3.4.4.1.5.1.1
Factor out of .
Step 3.4.4.1.5.1.2
Factor out of .
Step 3.4.4.1.5.1.3
Factor out of .
Step 3.4.4.1.5.2
Add and .
Step 3.4.4.1.6
Move to the left of .
Step 3.4.4.1.7
Multiply the numerator by the reciprocal of the denominator.
Step 3.4.4.1.8
Cancel the common factor of .
Step 3.4.4.1.8.1
Factor out of .
Step 3.4.4.1.8.2
Cancel the common factor.
Step 3.4.4.1.8.3
Rewrite the expression.
Step 3.5
Remove any equations from the system that are always true.